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Fermionizing the charge sector and bosonizing the spin part in the SU�2� slave-boson theory, we derive an
effective-field theory for dynamics of doped holes in the antiferromagnetically correlated spin background,
where spin fluctuations are described by an SO�5� Wess-Zumino-Witten �WZW� theory while dynamics of
doped holes is characterized by QED3 with a chemical-potential term. An important feature of our effective-
field theory is the coupling term between valence-bond fluctuations and doped holes. Considering that valence-
bond fluctuations are deeply related with monopole excitations of staggered U�1� gauge fields in the bosonic
field theory for spin fluctuations, we demonstrate that hole dynamics helps deconfinement of bosonic spinons
near the quantum critical point of the SO�5� WZW theory. We solve this effective-field theory in the Eliashberg
framework and find non-Fermi-liquid physics in thermodynamics and transport, where z=3 criticality with
dynamical exponent z plays an important role for hole dynamics. We discuss validity of our field theory,
applying it to a doped spin chain and comparing it with the slave-fermion framework. Furthermore, we discuss
instability of the anomalous metallic phase against superconductivity and density waves of doped holes,
resulting from competition between gauge and valence-bond fluctuations.
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I. INTRODUCTION

Doping to an antiferromagnetic Mott insulator has been
one of the central interests in modern condensed-matter
physics, associated with high Tc superconductivity. Since the
normal state is extremely anomalous, particularly shown
from the absence of quasiparticle excitations near ��� ,0�
and �0,��� momentum points1 and temperature quasilinear
behavior in transport experiments2 although well defined
electron excitations seem to exist near ���

2 ,� �
2 �,1,2 emer-

gence of rather conventional BCS-type superconductivity
from such an abnormal-normal state has been a long-
standing puzzle and still does. Such an anomalous behavior
would be surely due to strong correlations between electrons,
associated with Mott physics.

Slave-boson approach has been one of the canonical
frameworks for study of strongly correlated electrons. In par-
ticular, a doped Mott insulator problem was formulated in
the slave-boson context,3 where strong repulsive interactions
cause the so-called single-occupancy constraint naturally im-
posed in the slave-boson representation, and link variables
arise as collective “order-parameter” excitations formulated
as gauge fields. U�1� slave-boson gauge theory has been en-
joyed both intensively and extensively for the doped Mott
insulator problem, but such a formulation turns out to have
fundamental difficulty for d-wave superconductivity emerg-
ing from a doped Mott insulator.4

Lee et al.3 developed an SU�2� formulation, which ex-
tends the U�1� slave-boson theory to include fluctuations be-
tween nearly degenerate U�1� mean-field states, well appli-
cable in underdoped regions. Based on their SU�2�
construction, they could obtain the doping independent de-
creasing ratio of superfluid weight with a confinement an-
satz. In addition, they predicted a special structure of a vor-
tex, which has a staggered flux core. Furthermore, they
argued similarity between their staggered flux phase of the

SU�2� slave-boson theory and the Gutzwiller projected BCS
wave function based on an explicit numerical evaluation.

Although the SU�2� slave-boson framework has explained
many kinds of aspects for high Tc cuprates such as phase
diagram, thermodynamics, transport, etc.,3 antiferromagnetic
spin fluctuations are difficult to take into account in this con-
text. High Tc superconductivity is sometimes argued to
emerge from the spin liquid phase described by the spin sec-
tor of the slave-boson theory in the slave-boson community,
but its connection to antiferromagnetism is an important is-
sue since the original problem is doping to an antiferromag-
netic Mott insulator instead of doping to the spin liquid one.
This motivates us to propose how to introduce antiferromag-
netic correlations in the SU�2� slave-boson framework.

Study of quantum antiferromagnetism associated with
high Tc cuprates has been performed in the context of spin
liquid. In the bosonic representation of spin the half filled
quantum antiferromagnet on the square lattice is described
by the O�3� nonlinear � model, allowing a quantum phase
transition from an antiferromagnet to a quantum disordered
paramagnet. Bernevig et al.5 claimed that although the ap-
propriate off-critical elementary degrees of freedom are
given by either spin 1 excitons �gapped paramagnons� in the
quantum disordered paramagnet or spin 1 antiferromagnons
in the antiferromagnet, at the quantum critical point such
excitations should break up into more elementary spin 1/2
excitations usually called spinons.5 This was challenged by
Senthil et al.6 They argued that since the phase transition in
Ref. 5 is supposed to fall into Landau-Ginzburg-Wilson para-
digm, the spectrum at the quantum critical point should be
fully understandable only in terms of spin 1 bosonic degrees
of freedom.7 Senthil et al.6 proposed, as a possible candidate
for a deconfined quantum critical point, a direct quantum
phase transition between a Néel antiferromagnet and a
valence-bond solid state, where one gets spinon condensa-
tion in the Néel state while instanton excitations �tunneling
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events between energetically degenerate but topologically in-
equivalent gauge vacua in the CP1 representation of the O�3�
nonlinear � model� should possibly arise in the paramagnetic
phase, whose condensation does not allow spinon deconfine-
ment. Senthil et al.6 demonstrated that such proliferation of
instantons is not the case at the quantum critical point, where
a topological � term usually referred as a Berry phase term
makes instantons irrelevant and accordingly makes it pos-
sible to achieve spinon deconfinement.

This proposal motivated direct numerical simulations of
various microscopic models to find such an exotic quantum
critical point beyond the Landau-Ginzburg-Wilson paradigm.
Actually, Sandvik8 claimed that such a critical point exists
indeed in a modified Heisenberg model with four-spin inter-
actions. Furthermore, he pointed out an important thing, that
is, only one length scale seems to exist and accordingly criti-
cal exponents for both staggered spin correlations and
valence-bond fluctuations are the same as each other, appar-
ently in contrast with the original proposal for deconfined
quantum criticality of the bosonic field theory.

Resorting to the fermion representation of spin, QED3 or
QCD3 was obtained as an effective-field theory at half filling,
where its conformal invariant fixed point is allowed in the
large N limit, identified with algebraic spin liquid.9,10 An
important point is that this effective-field theory has an en-
larged symmetry compared with its microscopic Hamil-
tonian. QCD3 resulting from the � flux ansatz has Sp�4�
�SO�5�, while QED3 arising from the staggered flux gauge
exhibits SU�4�, where both are basically associated with spin
and nodal structures.9,10 This enlarged symmetry has impor-
tant physical implication that symmetry equivalent operators
have their same scaling dimension, which should be taken
into account for an effective-field theory of such composite
field variables.

Actually, Tanaka and Hu11 derived an effective-field
theory for competition between antiferromagnetism and
valence-bond solid. Starting from the � flux phase, they ob-
tain QCD3 as its effective-field theory although they do not
take such gauge fluctuations into account explicitly. Their
crucial observation is that the antiferromagnetic order param-
eter is symmetrically equivalent to the valence-bond one via
chiral rotation in SO�5�. Introducing a chiral rotated mass
term with an SO�5� superspin vector, they could derive an
SO�5� Wess-Zumino-Witten �WZW� theory. Validity of this
description is further supported by the fact that the SO�5�
WZW theory can be regarded as a natural extension of the
SO�4� WZW theory for one dimension,12 which non-Abelian
bosonization for spin degrees of freedom or equivalently
SU�2� chiral anomaly gives rise to. This discovery is mean-
ingful since it tells a possible connection with the numerical
simulation of Sandvik8 although an appropriate treatment for
the topological term is not known; thus true solutions for
such an effective-field theory are not found. Furthermore,
such competition between antiferromagnetism and valence-
bond solid is argued to be reflected as the checker board
pattern in the scanning tunneling microscopy.13

In this paper we follow the same strategy with the study
of Tanaka and Hu11 for spin degrees of freedom but away
from half filling introducing charge fluctuations based on the
SU�2� slave-boson framework. Two important problems can

arise away from half filling. One cautious theorist may con-
cern that a chemical-potential term will appear in the Dirac
theory of the fermionic spin representation away from half
filling, thus breaking the original structure for the SO�5�
WZW theory. However, such a term does not arise at least
for the staggered flux phase of the SU�2� slave-boson theory
since spinons are still at half filling even away from half
filling. This is the reason why the SU�2� slave-boson frame-
work is utilized in the present study. The other is how to
construct couplings between doped holes and spin fluctua-
tions. The second problem is our key issue.

We find that it is not easy to derive such couplings if we
resort to the nonlinear � model description for the holon
sector, derived in the previous study.14 In the present paper
we perform fermionization for the holon sector via flux at-
tachment, where a Dirac theory with a chemical-potential
term due to the presence of finite density of holons is found
in the staggered flux ansatz. Then, we can construct cou-
plings between spin fluctuations and holons in the same way
as the spinon sector since its theoretical structure is basically
the same as that of the spinon part. Performing the standard
gradient expansion, we have an effective-field theory for
SO�5� spin fluctuations, fermionic holons, and their cou-
plings. As a result, dynamics of doped holes in the antiferro-
magnetically correlated spin background turns out to be de-
scribed by the SO�5� WZW theory for spin fluctuations,
nonrelativistic QED3 around Dirac nodes for doped holes,
and interactions between valence-bond fluctuations and
holes.

Fermionic holons remind us of the slave-fermion repre-
sentation. We compare our effective-field theory with the
U�1� slave-fermion theory of the t-J model and discuss simi-
larities and differences between them. Then, we solve the
effective-field theory in the Eliashberg framework, where
momentum dependence in the fermion self-energy and ver-
tex corrections are neglected, justified by Migdal theorem
and large N approximation with the fermion flavor number N
at least for the second assumption.15 The Eliashberg frame-
work allows us to construct Luttinger-Ward functional of its
closed form, thus making it possible to solve the field theory
self-consistently. Based on this framework, we discuss its
phase diagram, thermodynamics, and transport near and
away from the quantum critical point of our effective-field
theory, where non-Fermi-liquid physics is found, analogous
with that of the slave-fermion framework proposed
recently.16,17

An important feature of our field theory is the coupling
term between valence-bond fluctuations and doped holes.
Considering that valence-bond fluctuations are deeply related
with monopole excitations of staggered U�1� gauge fields in
the bosonic field theory for spin fluctuations,18 the presence
of such a coupling term allows us to investigate how dynam-
ics of doped holes affects deconfinement of bosonic spinons.
Remarkably, we find that such couplings help spin fraction-
alization near the quantum critical point of the SO�5� WZW
theory.

We also apply our field theory to one-dimensional antifer-
romagnetic doped Mott insulator, where spin fluctuations are
described by the SO�4� WZW theory while charge excita-
tions are represented by relativistic QED2. Since one-dimen-
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sional study is well known, possible conclusions of our field
theory in one dimension can justify validity of our descrip-
tion. Furthermore, reliable analytic techniques can be utilized
in one dimension; thus this study would suggest an important
feature how doped holes affect spinon deconfinement.

Finally, we discuss instability of the non-Fermi-liquid
metal phase against superconductivity and density waves of
doped holes. As will be seen explicitly in the effective-field
theory �Eq. �10��, interactions between doped holes turn out
to be mediated by both gauge and valence-bond fluctuations.
As a result, emergence of superconductivity from the non-
Fermi-liquid state is determined by competition between
gauge and valence-bond interactions. For particle-hole chan-
nel instabilities, we discuss that the homogeneous metallic
phase can be stabilized at least when the flavor number of
fermions �doped holes� is sufficiently large.

II. EFFECTIVE-FIELD THEORY

Dynamics of doped holes in the antiferromagnetically cor-
related spin background is described by the t-J Hamiltonian,

H = − t�
�ij�

�ci�
† cj� + H.c.� + J�

�ij�
	S� i · S� j −

1

4
ninj
 . �1�

Introducing an SU�2� slave-boson representation for an elec-
tron field,

ci↑ =
1
�2

hi
†�i+ =

1
�2

�bi1
† f i1 + bi2

† f i2
† � ,

ci↓ =
1
�2

hi
†�i− =

1
�2

�bi1
† f i2 − bi2

† f i1
† � , �2�

where �i+= �
f i1

f i2
† � and �i−= �

f i2

−f i1
† � are SU�2� spinon spinors and

hi= �
bi1

bi2
� is holon spinor, one can rewrite the t-J model in

terms of these fractionalized excitations with hopping and
pairing fluctuations,

L = L0 + Ls + Lh, L0 = Jr�
�ij�

tr�Uij
† Uij� ,

Ls =
1

2�
i

�i�
† ��� − iai0

k �k��i� + Jr�
�ij�

��i�
† Uij� j� + H.c.� ,

Lh = �
i

hi
†��� − 	 − iai0

k �k�hi + tr�
�ij�

�hi
†Uijhj + H.c.� , �3�

where the SU�2� matrix field is Uij = �
−
ij

† �ij

�ij
† 
ij

� and Jr= 3J
16 and

tr= t
2 are redefined couplings.3 Since this decomposition rep-

resentation enlarges the original electron Hilbert space, con-
straints are introduced via Lagrange multiplier fields ai0

k with
k=1,2 ,3.

In the SU�2� formulation Lee et al.3 chose the staggered
flux gauge,

Uij
SF = − �
2 + �2�3 exp�i�− 1�ix+iy��3� �4�

with a phase �=tan−1��
 �. Although the staggered flux ansatz
breaks translational invariance, this formal symmetry break-

ing is restored via SU�2� fluctuations between nearly degen-
erate U�1� mean-field states. For example, one possible U�1�
ground state, the d-wave pairing one Uij

dSC=−
�3
+ �−1�iy+jy��1 can result from the SU�2� rotation Uij

dSC

=WiUij
SFWj

† with an SU�2� matrix Wi=exp�i�−1�ix+iy�
4 �1.

Then, our starting point becomes the following effective La-
grangian:

LSF =
1

2�
i

�i�
† ��� − iai0

3 �3��i� + Jr�
�ij�

��i�
† Uij

SFeiaij
3 �3� j� + H.c.�

+ �
i

hi
†��� − 	 − iai0

3 �3�hi + tr�
�ij�

�hi
†Uij

SFeiaij
3 �3hj + H.c.�

+ Jr�
�ij�

tr�Uij
SF†Uij

SF� , �5�

where we have introduced only one kind of gauge field a	
3 as

important low energy fluctuations since other two ones, a	
1

and a	
2 , are gapped due to Anderson-Higgs mechanism in the

staggered flux phase.14

Our idea is to fermionize the holon sector attaching a
fictitious flux to a holon field,

LSF
h = �

i

�i
†��� − 	 − iai0

3 �3��i + tr�
�ij�

��i
†Uij

SFeiaij
3 �3eicij�3� j

+ H.c.� − i�
i

ci0	�i
†�3�i −

1

2
��xcy − �ycx�i
 , �6�

where a bosonic field variable hi now becomes a fermionic
one �i= �

�i1

�i2
� with =�. It is important to notice that our flux

attachment is performed in an opposite way for each isospin
sector, confirmed by the presence of �3 in 2��i

†�3�i�
=�xcy −�ycx. As a result, there is no net flux in the mean-field
approximation of this construction, considering that the den-
sity of bi1 bosons is the same as that of bi2 bosons in the
staggered flux phase.14

This observation is interesting since it suggests a connec-
tion with an SU�2� slave-fermion representation. If aij

3 is
shifted to aij

3 −cij, the Chern-Simons flux is transferred to
spinons, turning their statistics into bosons. Then, we have a
bosonic spinon description with a fermionic holon, nothing
but the slave-fermion representation.

Performing the continuum approximation for the long-
wavelength and low energy limits, we find an effective-field
theory in terms of only fermionic variables,14

L = �̄�	��	 − ia	
3�3�� +

1

2e2 ��	����a�
3�2 + �̄�	��	 − ia	

3�3

− ic	�3�� − 	h�̄�0� +
i

4
c	�	����c�. �7�

Dirac structure10 results from the staggered flux ansatz,
where both � and � are eight component spinors and Dir-
ac gamma matrices are �0= �

�3 0
0 −�3

�, �1= �
�1 0
0 −�1

�, and �2

= �
�2 0
0 −�2

�. a	
3 is slave-boson U�1� gauge field, where a finite

bare gauge charge e is introduced. c	 is Chern-Simons gauge
field with its statistical angle =�. It is important to under-
stand that spinons are still at half filling even away from half
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filling in the SU�2� formulation. The single-occupancy con-
straint in the SU�2� representation is given by f i1

† f i1+ f i2
† f i2

+bi1
† bi1−bi2

† bi2=1. Thus, if the condition of �bi1
† bi1�

= �bi2
† bi2�= �

2 with hole concentration � is satisfied, we see
�f i1

† f i1+ f i2
† f i2�=1, i.e., spinons are at half filling. As a result, a

chemical-potential term does not arise in the spinon sector.
Actually, this was demonstrated for the staggered flux phase
in the mean-field analysis of the SU�2� slave-boson theory.14

On the other hand, a chemical-potential term appears in the
holon sector to form a Fermi pocket around the Dirac node.

To find an effective-field theory for low energy spin fluc-
tuations, it is necessary to consider physical symmetry of the
spinon sector. We know that this symmetry is closely con-
nected with both spin and Dirac spaces. Since spin SU�2�
symmetry is hidden in the present eight component represen-
tation, we consider the redundant representation �= ��

�̂
� of

16 components with a Dirac spinor �̂� i�2�
�= �

f↓
−f↑

† �, follow-
ing Ref. 10. Noting that the group space is composed of G
=GDirac � Ggauge � Gspin, we see 15 generators associated with
SU�4� symmetry10 given by I � I ��� , �3 � I ��� , �5 � I ��� ,
i�3�5 � I � I, �3 � �3 � I, �5 � �3 � I, and i�3�5 � �3 ��� ,
where �3= � 0 I

I 0 � and �5=�0�1�2�3= i� 0 I
−I 0 � satisfying

��	 ,�3�5��+=0. This implies that symmetry equivalent opera-
tors via SU�4� have the same strength for instability, i.e., the
same critical exponent for each correlation function. Actu-
ally, this was intensively discussed in Refs. 9 and 10.

Recently, Xu and Sachdev19 claimed existence of a novel
spin liquid fixed point, where such an SU�4� symmetry is
broken down to SO�5�. At this fixed point most relevant spin
fluctuations are Néel vector and valence-bond fluctuations,
and they compete with each other since ten generators of I
� I ��� , �3 � I ��� , �5 � I ��� , and i�3�5 � I � I remain and
such spin fluctuations are symmetry equivalent operators via
chiral rotation.

In this paper we also focus on competition between Néel
and valence-bond fluctuations. Following Tanaka and Hu,11

we introduce an SO�5� superspin vector v�
= �v1 ,v2 ,v3 ,v4 ,v5�, where the former three components form
Néel vectors and the latter two ones represent x and y
valence-bond fluctuations, and consider the fermion mass

term −m�̄�v� ·�� �� with �� = ��x ,�y ,�z , i�3 , i�5� for the
spinon sector. On the other hand, the holon mass term be-
comes −m��̄�i�3v4+ i�5v5� since it does not have spin. As a
result, we find the following Lagrangian for symmetry
“breaking:”

L = �̄�	��	 − ia	
3�3�� − m�̄�v� · �� �� +

1

2e2 ��	����a�
3�2

+ �̄�	��	 − ia	
3�3 − ic	�3�� − 	h�̄�0� +

i

4
c	�	����c�

− m��̄�i�3v4 + i�5v5�� . �8�

The next tasks are to perform integration of Dirac spinons
and expand the resulting logarithmic action for the super-
spin vector. Based on the gradient expansion method,
Tanaka and Hu11 derived an SO�5� nonlinear � model with a
WZW term ignoring gauge fluctuations, Sspin=SNLsM

+SWZW, where SNLsM=�d3x 1
2g ��	vk�2 and SWZW

= i 2�
Area�S4��0

1dt�d3x�abcdeva�tvb��vc�xvd�yve with Area�S4�

= 2�5/2

��5/2� . Since Dirac fermions are massive in the symmetry
“broken” phase and their fluctuations are ignored in the low
energy limit, gauge-fluctuation corrections will be irrelevant
considering that they can appear through fermion bubbles.
Only one point that should be careful is a topological contri-
bution, associated with an imaginary term. Although the
WZW term is nicely derived in the absence of gauge fluc-
tuations, an additional imaginary term may arise, a coupling
term between a topologically nontrivial fermionic current
and gauge field.20 If we represent the Dirac spinor as �n

= �

n

+


n
− �, where 
n

� is a two component spinor with an isospin
index n=1,2, one can see that each sector in the Dirac space
gives rise to such a term. However, their signs are opposite,
thus such terms are canceled.21 This is well known to be
cancellation of parity anomaly in condensed-matter physics.
Another way to say this is that the signs of mass terms for
Dirac fermions �
n

+ and 
n
−� are opposite, resulting in cancel-

lation of the parity anomaly.
Based on the above discussion, we reach an effective-field

theory,

S =� d3x� 1

2g
��	vk�2 − m��̄�i�3v4 + i�5v5��� + SWZW

+� d3x��̄�	��	 − ia	
3�3 − ic	�3 − iA	�� − 	h�̄�0�

+
i

4
c	�	����c� +

1

2e2 ��	����a�
3�2� , �9�

where spin fluctuations are described by the SO�5� WZW
theory. An interesting observation is that the Chern-Simons
contribution becomes irrelevant if the holon dynamics is in a
critical phase. Shifting the slave-boson gauge field as a	

3

−c	 and performing integration of Chern-Simons gauge
fields, we obtain ������a3� · ���a3�. This contribution is
irrelevant since it has a high scaling dimension owing to the
presence of an additional derivative. Considering that the
density of holons is finite to allow a Fermi surface �pocket
around the Dirac point�, it is natural to assume that the fer-
mion sector is in criticality. We note that this kind of argu-
ment was well utilized previously.22 As a result, we find an
effective-field theory for an antiferromagnetic doped Mott
insulator problem,

S =� d3x� 1

2g
��	vk�2 − m��̄�i�3v4 + i�5v5���

+� d3x��̄�	��	 − ia	
3�3 − iA	�� − 	h�̄�0�

+
1

2e2 ��	����a�
3�2� + SWZW. �10�

Several remarks are in order. First, the spin sector is de-
scribed by the SO�5� WZW theory even away from half fill-
ing, starting from the SU�2� slave-boson theory in the stag-
gered flux gauge. Validity of this description will be further
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supported, comparing the present effective theory with the
slave-fermion framework and applying it to one dimension.
Second, dynamics of doped holes is described by U�1� gauge
theory with finite density of fermionic holons around four
Dirac nodes. Thus, non-Fermi-liquid physics is expected
naturally. Third, interactions between spin fluctuations and
doped holes emerge as couplings between valence-bond fluc-
tuations and fermionic holons. Considering that valence-
bond fluctuations are deeply connected with monopole exci-
tations of CP1 or staggered U�1� gauge fields in the bosonic
field theory for spin fluctuations, this coupling form implies
how dynamics of doped holes affects spin fractionalization,
i.e., deconfinement of bosonic spinons. This will be dis-
cussed more deeply.

III. CONNECTION WITH U(1) SLAVE-FERMION THEORY

Although the effective-field theory �Eq. �10�� has the
similar spirit with the slave-fermion framework, it has an
important different point. To understand this more clearly, we
consider the U�1� slave-fermion representation,

ci� = �i
†bi�, �11�

where �i and bi� are fermionic holon and bosonic spinon,
respectively. Inserting this representation into Eq. �1�, we
obtain the following expression for both exchange-
interaction and electron-hopping terms:

J�
ij
	S� i · S� j −

1

4
ninj
 →

J

2�
ij

��ij
b �2 − J�

ij

��ij
b†���bi�bj�

+ H.c.� ,

− t�
ij

�ci�
† cj� + H.c.� → t�

ij

�
 ji
�
ij

b + H.c.� − t�
ij

�bi�
† 
ij

b bj�

+ H.c.� + t�
ij

�� j
†
 ji
��i + H.c.� , �12�

where each composite field is given by

�ij = �
��

���bi�bj�, 
 ji
� = �

�

bi�
† bj�, 
ij

b = �i� j
†,

representing short-range antiferromagnetic correlations, fer-
romagnetic spin fluctuations, and hopping of holons, respec-
tively.

In the low energy and long-wavelength limits one can set
the above collective fields as

�ij = �eicij, 
ij
b = 
beiaij, 
ij

� = 
�e
iaij , �13�

where amplitude fluctuations are frozen to be their saddle-
point values, and only phase fluctuations are kept impor-
tantly. Then, the resulting slave-fermion Lagrangian becomes

Leff = Ls + Lh + Lc + L0,

Ls = �
i

bi�
† ��� − 	�bi� − t
b�

ij

�bi�
† eiaijbj� + H.c.�

− J��
ij

�e−icij���bi�bj� + H.c.� ,

Lh = �
i

�i
†���i + t
��

ij

�� j
†e−iaij�i + H.c.� ,

Lc = i�
i

�i�bi�
† bi� + �i

†�i − 2S� ,

L0 = NL�J�2 + 4t
�
b� , �14�

where �i in Lc is a Lagrange multiplier field to impose the
single-occupancy constraint with S=1 /2 and NL in L0 is
number of lattice sites.

Comparing Eq. �10� with Eq. �14�, one will find several
different points. First, the spectrum of holon excitations is
not relativistic in Eq. �14�. However, this can be adjusted,
allowing � flux in the U�1� gauge field aij, i.e., ��aij =�.
Then, four Dirac nodes arise, and hole doping gives finite
density of holons, resulting in the hole pockets around the
nodes.

Second, spin dynamics is described by usual spin 1 exci-
tations in Eq. �10� while it is expressed with spin 1/2 frac-
tionalized spinons in Eq. �14�. However, the presence of the
WZW term in Eq. �10� may give rise to spin fractionalization
as one-dimensional physics12 or the previous proposal6 for
deconfined quantum criticality. If we start from Eq. �14�, we
focus on two kinds of gauge fluctuations, corresponding to
staggered U�1� gauge fields cij and uniform U�1� gauge fields
aij. In particular, the staggered U�1� gauge field cij turns out
to be the same as the CP1 gauge field if the Schwinger-boson
effective Lagrangian is mapped onto the CP1 gauge theory of
the O�3� nonlinear � model in the long-wavelength limit.18

In this respect, if we assume that staggered gauge fluctua-
tions mediate confining interactions between spinons, we ex-
pect to see spin 1 fluctuations described by a � model-type
theory. However, the fate of valence-bond fluctuations is not
clear in this case.

Third, the coupling structure between spin fluctuations
and doped holes in Eq. �10� differs from that in Eq. �14�. In
the slave-fermion Lagrangian �Eq. �14�� direct couplings be-
tween spin and charge degrees of freedom do not exist al-
though nonlocal current-current interactions appear in the
low energy limit, associated with the single-occupancy con-
straint. Even if we assume staggered gauge fluctuations con-
fining, it is difficult to find a coupling term between spin
fluctuations and doped holes. On the other hand, our
effective-field theory �Eq. �10�� exhibits its direct coupling
term explicitly. This coupling term is an important ingredient
for dynamics of doped holes in the quantum antiferromagnet.
As demonstrated intensively in the previous work,18 valence-
bond fluctuations are deeply related with instanton �mono-
pole� excitations of staggered U�1� gauge fields cij. Actually,
v4 and v5 fields can be identified with an instanton operator
in the presence of a topological � term. This implies that the
presence of doped holes affects spinon confinement directly
via their couplings. In the cumulant expansion for the cou-
pling term one can see that holon dynamics modifies
monopole-monopole correlations, giving rise to dissipation.
As a result, an effective theory for monopole excitations
away from half filling is changed seriously from that at half

FERMIONIZATION FOR CHARGE DEGREES OF FREEDOM… PHYSICAL REVIEW B 78, 195113 �2008�

195113-5



filling. In Sec. IV we will see that the presence of doped
holes helps bosonic spinons deconfined near the quantum
critical point.

IV. PHYSICAL PROPERTIES

A. Eliashberg framework

Three kinds of field variables, that is, fermionic holon,
SO�5� superspin vector, and uniform U�1� gauge field, make
our effective-field theory complicated. In this respect it is not
easy to treat such all degrees of freedom self-consistently.
Recently, it was explicitly demonstrated that Eliashberg
framework is the minimal self-consistent treatment for an
effective-field theory near its quantum critical point.15 The
Eliashberg treatment neglects momentum dependence of a
fermion self-energy and vertex corrections. The first assump-
tion is based on the fact that momentum dependence of a
fermion self-energy is regular, and singular physics arises
from its frequency dependence. This can be checked explic-
itly at least in the one-loop level. The second assumption is
more serious than the first one, sometimes called Migdal
theorem.23 When fermions are much faster than bosons, ver-
tex corrections can be neglected since the prefactor in the
renormalized vertex is given by the ratio of fermion and
boson velocities. However, this turns out to be not sufficient
for the Eliashberg framework.15 Another parameter is shown
to need, that is, the fermion flavor number N. In the large N
limit the Eliashberg framework is justified.

For the Eliashberg treatment we rewrite the effective-field
theory as follows:

S = S� + Sv + Sa + Sint,

S� =� d3x��̄�	��	 − iA	�� − 	h�̄�0� ,

Sv =� d3x� 1

2g
��	vk�2 + mv

2��vk�2 − 1�� + SWZW,

Sa =� d3x� 1

2e2 ��	����a�
3�2� ,

Sint =� d3x�− m��̄�i�3v4 + i�5v5�� − ia	
3 �̄�	�3� ,

�15�

where mv
2 represents mass of superspin vector bosons arising

from the SO�5� rotor constraint �k=1
5 �vk�2=1. It will be deter-

mined self-consistently.
Performing the cumulant expansion for Sint, we find an

effective action Seff=Sv+S�+Sa− 1
2 ��Sint

2 �− �Sint�2�. Although
this expression is for the second order, it includes an infinite
order actually. Accordingly, we can construct the correspond-
ing Luttinger-Ward functional in the Eliashberg framework,

FLW = FLW
� + FLW

v + FLW
a + Yv + Ya,

FLW
� = − T�

i�
� ddk

�2��d tr�ln�g�
−1�k,i�� + ���i��

− ���i��G��k,i��� ,

FLW
v = T�

i�
� ddq

�2��d� �
m,n=1

5

ln�dv
−1�q,i���mn +�v

mn�q,i��

− �
m,n=1

5

�v
mn�q,i��Dv

mn�q,i��� − mv
2,

FLW
a = T�

i�
� ddq

�2��d �ln�da
−1�q,i�� +�a�q,i��

−�a�q,i��Da�q,i��� ,

Yv = −
m�

2

2
T�

i�
� ddk

�2��dT�
i�
� ddq

�2��d

� �
m,n=4

5

tr�Dv
mn�q,i���mG��k + q,i� + i���nG��k,i��� ,

Ya = −
1

2
T�

i�
� ddk

�2��dT�
i�
� ddq

�2��d tr�Da
	��q,i��

��	�3G��k + q,i� + i�����3G��k,i��� . �16�

G��k , i�� in FLW
� is a renormalized propagator for holons,

given by G��k , i��= �g�
−1�k , i��+���i��−1, where g��k , i��

= �i�0�+ i�iki+	h�0�−1 is its bare propagator and ���i�� is
its momentum-independent self-energy. Dv

mn�q , i�� in FLW
v is

a renormalized propagator for superspin vector fields, given
by Dv

mn�q , i��= �dv
−1�q , i���mn+�v

mn�q , i��−1, where
dv�q , i��= � q2+�2

2g +mv
2�−1 is its bare propagator and

�v
mn�q , i�� is its self-energy. Da�q , i�� in FLW

a is a renormal-
ized kernel for the gauge propagator Da

	��q , i��
=Da�q , i����	�−

q	q�
q2 �, given by Da�q , i��= �da

−1�q , i��
+�a�q , i��−1, where da�q , i��= � q2+�2

2e2 �−1 is its bare kernel
and �a�q , i�� is its self-energy in �a

	��q , i��
=�a�q , i����	�−

q	q�
q2 �. Yv is introduced for self-energy cor-

rections resulting from the first term in Sint of Eq. �15� while
Ya is for those arising from the second term of Sint. In the
self-energy functional Yv �4 should be replaced with �3,
where this problem appears from our notation form.

It is important to notice that Luttinger-Ward functional is
not usually written in a closed form. However, the Luttinger-
Ward functional can be written in its closed form at least for
the Eliashberg framework.24 Actually, performing variation
for the Luttinger-Ward functional with respect to each self-

energy, i.e.,
�FLW

����i�� =0,
�FLW

��v
mn�q,i�� =0, and

�FLW

��a
	��q,i�� =0, we find

self-consistent Eliashberg equations,
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���i�� = m�
2T�

i�
� ddq

�2��d �
m,n=4

5

Dv
mn�q,i���mG��kF + q,i�

+ i���n + T�
i�
� ddq

�2��dDa
	��q,i��

��	�3G��kF + q,i� + i�����3,

�v
mn�q,i�� = T�

i�
� ddk

�2��d �
m,n=4

5 	−
m�

2

2
tr��mG��k + q,i�

+ i���nG��k,i���
 ,

�a
	��q,i�� = T�

i�
� ddk

�2��d	−
1

2
tr��	�3G��k + q,i� + i��

����3G��k,i���
 . �17�

The holon self-energy results from both valence-bond and
gauge fluctuations, where �4→�3 is performed. The super-
spin vector self-energy arises from holon fluctuations, where
�4 is also replaced with �3. Notice �v

mn�q , i��=0 for m ,n
=1,2 ,3. The gauge-field self-energy appears from holon cur-
rent fluctuations. Equations �16� and �17� complete the
Eliashberg framework.

B. Simplification of Luttinger-Ward functional

Using the Eliashberg equations �Eq. �17��, one can sim-
plify the Luttinger-Ward functional �Eq. �16�� as follows:

FLW = − T�
i�
� ddk

�2��d tr�ln�g�
−1�k,i�� + ���i��

− ���i��G��k,i���

+ T�
i�
� ddq

�2��d� �
m,n=1

5

ln�dv
−1�q,i���mn

+�v
mn�q,i��� − mv

2 + T�
i�
� ddq

�2��d

�ln�da
−1�q,i�� +�a�q,i�� , �18�

where the self-energy parts for superspin vector and U�1�
gauge fields are canceled out from the use of Eq. �17�. Then,
one can see that the holon free energy is nothing but the free
energy of Fermi liquid as follows:

FLW
� � − N�T�

i�
� ddk

�2��d ln�2	h�i�� + 	h
2 − �2 − k2

� − N���T�
i�

��� = −
�N���

6
T2 = FFL

� . �19�

Here, �� is the density of states around the Dirac node and
the number of Dirac nodes is N�=4. f�y�= 1

ey+1
is the Fermi-

Dirac distribution function with temperature scaling. As a

result, we find the Eliashberg free energy of our effective-
field theory,

FLW = −
�N���

6
T2 − mv

2

+ T�
i�
� ddq

�2��d� �
m,n=1

5

ln�dv
−1�q,i���mn

+�v
mn�q,i��� + T�

i�
� ddq

�2��d

�ln�da
−1�q,i�� +�a�q,i�� . �20�

The remaining thing is to evaluate each self-energy. The
superspin vector self-energy �v

mn�q , i��=�v�q , i���mn for
m ,n=4,5 is found to be

�v�q,i�� �
�N�m�

2��

4

���
q

. �21�

This is nothing but the standard Landau damping term, origi-
nating from fermion excitations near the Fermi surface.
Since the density of holons is finite due to hole doping, emer-
gence of the Landau damping term is quite natural. Then, the
renormalized propagator for superspin fluctuations is given
by

Dv
mn�q,i�� =

�mn

q2 +�2

2g
+ mv

2

for m,n = 1,2,3,

Dv
mn�q,i�� =

�mn

q2 +�2

2g
+ mv

2 +
�N�m�

2��

4

���
q

�
�mn

q2

2g
+ mv

2 +
�N�m�

2��

4

���
q

for m,n = 4,5,

�22�

implying that antiferromagnetic spin fluctuations are de-
scribed by z=1 theory while valence-bond fluctuations are
expressed by z=3 theory, where z is the dynamical exponent.
The gauge self-energy is also given by the Landau damping
term �a�q , i��=

�N���
4

���
q ; thus the renormalized gauge

propagator becomes

Da�q,i�� �
1

q2

2e2 +
�N���

4

���
q

, �23�

described by z=3 critical theory.
Inserting bosonic self-energies into Eq. �20�, we find the

final expression for the Eliashberg free energy,
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FLW = −
�N���

6
T2 −

�−2

2g
+ T�

i�
� ddq

�2��d�3 ln�q2 +�2

+ �−2� + 2 ln	q2 + �−2 + �v
���
q

�

+ T�
i�
� ddq

�2��d ln	q2 + �a

���
q

 , �24�

where

�−2 = 2gmv
2, �v =

�gN�m�
2��

2
, �a =

�e2N���
2

represent the correlation length for superspin fluctuations,
Landau damping coefficient for superspin fields, and that for
gauge fields.

Several remarks about the Eliashberg framework are in
order. First, the Landau damping contribution does not de-
pend on the fermion self-energy in the Eliashberg frame-
work, allowing one to use a bare fermion propagator instead
of its full Green’s function.15 Second, z=3 criticality sup-
ports Migdal theorem since on-shell �or resonance� fermion
momenta are larger than on-shell boson one at the same en-
ergy. Third, the number of Dirac nodes N� plays the same
role as the fermion flavor number in the Eliashberg frame-
work. In this respect the Eliashberg framework works well
for our effective-field theory.

C. Phase diagram

Performing variation in the free energy �Eq. �24�� with
respect to the correlation length, i.e.,

�FLW

��−2 =0, we obtain the
self-consistent equation for the correlation length in the
Eliashberg framework,

1 = 2gT�
i�
� ddq

�2��d� 3

q2 +�2 + �−2 +
2

q2 + �−2 + �v
���
q
� .

�25�

Notice that interactions between valence-bond fluctuations
and holons result in the z=3 part.

Performing integration, we find the following expression
for the correlation length:

1 =
3g

�
T�ln sinh	 �

2T

 − ln sinh	 �−1

2T

�

+
4g

3�
T ln�sinh	 ��3�v�−1

2T

� − 2T�−

��3�v�−2

4T
−
�2

6
T

− ��3�v�−1 ln�1 − e−���3�v�−1/T��

+ ��3�v�−1 ln�sinh	 ��3�v�−1

2T

� + T�

k=1

�
e−k���3�v�−1/T�

k2 �
+

2g

3
T�ln sinh	 �

2T

 − ln sinh	 ��3�v�−1

2T

� . �26�

As shown in this equation, there exist three regimes, �A� T

 
��3�v�−1

2  
�−1

2 , �B�
��3�v�−1

2  T �−1

2 , and �C�
��3�v�−1

2  
�−1

2  T,
emerging from coexistence of z=1 �antiferromagnetic� and
z=3 �valence-bond� fluctuations. In regime �A� both z=1 and
z=3 fluctuations are gapped, while in regime �C� both spin
fluctuations are critical, that is, in the quantum critical re-
gime. In regime �B� only valence-bond fluctuations �z=3�
are critical and z=1 antiferromagnetic ones are gapped. The
phase diagram is shown in Fig. 1.

Considering
��3�v�−1

2 !
�−1

2 near the quantum critical point,
we can simplify the above equation and find that antiferro-
magnetic fluctuations play an important role in determining
the SO�5� superspin correlation length near the quantum
critical point. As a result, we obtain the following expression
for the correlation length:

�−1	g � gc;T 
�−1

2

 � �	1 +

2�

9

� −

2�

3g
�

�
2�

3
	 1

gc
−

1

g

 ,

�−1	g � gc;T"
�−1

2

 = 2Te��/3���1/gc−1/g�/T�, �27�

where gc= � 3
2� + 1

3 �� is the quantum critical point.25 Recalling
g���#m2��� in the gradient expansion and m2���# ��−�0�
with hole concentration � �0 near the quantum critical
point, we find the critical hole concentration in the Eliash-
berg framework,

�c = �0 −
1

c
�	 3

2�
+

1

3

�� , �28�

where c is a positive numerical constant. Thus, an antiferro-
magnetically ordered phase appears in � �c, and a quantum
disordered state arises in �"�c. The nature of the disordered
state will be determined by SO�5� symmetry-breaking effec-
tive potentials.

T

g

B

A

C

QDQCPCO

−1(ξ γ ) /2v

3
T ~

ξ /2
−1

T ~AF&VBS
z=1&z=3 VBS

z=3

FIG. 1. Schematic phase diagram: CO, QD, and QCP represent
classically ordered, quantum disordered, and quantum critical point,

respectively. Two crossover scales emerge as T�
��3�v�−1

2 and T

� �−1

2 , identifying three regimes. In regime �A� of T 
��3�v�−1

2  
�−1

2
both z=1 antiferromagnetic �AF� and z=3 valence-bond solid

�VBS� fluctuations are gapped, while in regime �C� of
��3�v�−1

2  
�−1

2
 T both spin fluctuations are critical, that is, in the quantum critical

regime. In regime �B� of
��3�v�−1

2  T �−1

2 only z=3 VBS fluctuations
are critical, and z=1 AF ones are gapped.
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D. Deconfined quantum critical point

We consider how interactions between valence-bond fluc-
tuations and holons affect the deconfined quantum critical
point, proposed to exist at half filling. As discussed before,
valence-bond fluctuations can be identified with monopole
excitations of staggered gauge fields. Introducing �= 1

�2
�v4

+ iv5� and considering SO�5� symmetry breaking for the
WZW term as follows in Ref. 11, we find an effective-field
theory for monopole or valence-bond fluctuations from the
effective-field theory �Eq. �10��,

SVB = T�
i�
� d2q

�2��2�
†�q,i��	 q2

2g
+
�N�m�

2��

4

���
q

��q,i��

− �
0

�

d�� d2rym��4 +�†4� . �29�

Here, the cubic power in the last term results from the WZW
term with SO�5� symmetry breaking, where ym is the mono-
pole fugacity. If the topological � term is not taken into ac-
count, the condensation-induced term will be given by
−�0
�d��d2rym��+�†�.
An important point is that dynamics of valence-bond ex-

citations is described by z=3 critical theory at the quantum
critical point. As a result, two spatial dimensions are already
in the upper critical dimension, thus higher order interactions
beyond the Gaussian term are irrelevant. It means that the
WZW-induced cubic term can be neglected safely at the
quantum critical point. Equivalently, the monopole fugacity
vanishes at the quantum critical point, indicating deconfine-
ment of bosonic spinons. We point out that the topological
term plays an important role for deconfinement even away
from half filling. If the topological term is ignored, the
monopole-fugacity term of linear in � is relevant, giving rise
to confinement.

Although proliferation of monopole excitations is prohib-
ited due to fermion excitations, monopoles are in a critical
state of z=3 instead of a gapped phase. Such critical valence-
bond fluctuations will affect holon dynamics. This feedback
effect to holon dynamics is an important ingredient for the
source of non-Fermi-liquid physics near the quantum critical
point.

E. Thermodynamics

We study thermodynamics in each regime. We start from
the following expression for the Eliashberg free energy:

FLW = −
�N���

6
T2 −

�−2

2g

+
3

2�
T�

0

�

dqq ln�2 sinh	�q2 + �−2

2T

�

−
1

�2�
0

�

dqq�
0

�

d� coth	 �
2T

tan−1	�v

�

q�q2 + �−2�



−
1

2�2�
0

�

d� coth	 �
2T

�

0

�

dqq tan−1	�a
�

q3
 . �30�

The first term is due to the Fermi-liquid contribution of ho-
lon excitations, and the second is the correlation length term.
The third contribution results from z=1 antiferromagnetic
fluctuations, while the fourth term arises from z=3 valence-
bond excitations. The last term originates from z=3 gauge
fluctuations.

Considering the specific-heat coefficient given by ��T�
= C�T�

T =−
�2FLW�T�

�T2 , we obtain its analytic expression in each
regime,

�	T"
��v�

3�−1

2



� 28/3	 1

2�2 +
1

8�

�2�v

2/3 + �a
2/3�

���
0

�

dy�−
y5/3

sinh2 y
+

y8/3 coth y

sinh2 y
��T−1/3,

�	T 
��v�

3�−1

2

 � 28/3	 1

2�2 +
1

8�

�a

2/3��
0

�

dy�−
y5/3

sinh2 y

+
y8/3 coth y

sinh2 y
��T−1/3, �31�

where only dominant contributions are shown. As discussed

previously, we have three regimes, �A� T 
��3�v�−1

2 where both
antiferromagnetic and valence-bond fluctuations are gapped,

�B�
��3�v�−1

2  T �−1

2 where only valence-bond fluctuations are
critical, and �C� �−1

2  T where both antiferromagnetic and
valence-bond fluctuations are critical. In regime �A� contri-
butions from superspin fluctuations exhibit an exponential
dependence of temperature and ignored in the low energy
limit. Dominant contributions are driven by z=3 critical
gauge fluctuations, resulting in ��T��T−1/3. In regime �B�
antiferromagnetic fluctuations cause an exponential depen-
dence of temperature while both valence-bond and gauge
fluctuations give rise to ��T��T−1/3 due to their z=3 criti-
cality. In regime �C� z=3 critical valence-bond excitations
and gauge fluctuations allow ��T��T−1/3 while z=1 critical
antiferromagnetic fluctuations result in �AF�T" �−1

2 �
= 6
� ��0

�dx x3

sinh2 x
�T, subleading thus ignored in the low energy

limit.

F. Transport

We discuss electrical transport of the effective-field theory
�Eq. �10��. As shown in the Eliashberg equations �Eq. �17��,
the holon self-energy is given by two contributions,

��
v�i�� = m�

2T�
i�
� ddq

�2��d �
m,n=4

5

Dv
mn�q,i��

��mG��k + q,i� + i���n,
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��
a�i�� = T�

i�
� ddq

�2��dDa
	��q,i��

��	�3G��k + q,i� + i�����3, �32�

where the first is due to valence-bond or monopole fluctua-
tions and the second comes from gauge fluctuations.

We first consider the self-energy due to valence-bond
fluctuations. The above expression can be written as follows:

��
v�i�� � −

2gm�
2

	h
T�

i�
� ddq

�2��d

1

q2 + �−2 + �v
���
q

�
i�0� + i�iki

F + 	h�0

i� + i� − q cos �
, �33�

where the self-energy correction of doped holes via z=3
valence-bond fluctuations is clearly seen. Here, kF

=�kx
F2+ky

F2=	h is the holon Fermi momentum. Then, the
imaginary part of the self-energy is given by

Im ��
v�� + i�� =

gm�
2

2�3	h
��0� + i�iki

F + 	h�0��
0

���

d�1

��
�−1

�

dq
q

�q2 − �� +�1�2

�v�1q

q6 + �v
2�1

2 ,

where Wick rotation is performed at zero temperature in or-
der to see frequency dependence of the self-energy.

Performing momentum and frequency integrals, we find

Im ��
v	�" ��v�

3�−1

2

 �

gm�
2

4�3�2�v
1/3�0���2/3,

Im ��
v	� ��v�

3�−1

2

 �

gm�
2�

�3�2
�0� + �0O��2� . �34�

Note that the ���2/3 behavior is the hallmark of z=3 criticality
in two dimensions.26 The self-energy correction due to gauge
fluctuations also gives rise to Im ��

a���# ���2/3.
At finite temperatures the zero-frequency self-energy cor-

rections turn out to diverge in the one-loop approximation.
However, such divergences due to both gauge and valence-
bond fluctuations need not be given much attention because
such self-energies are not gauge invariant; thus they do not
have any physical meaning. These divergences should be
considered as an artifact of gauge noninvariance. Gauge in-
variance can be incorporated via vertex corrections, which
cancel the divergent parts in the self-energies, giving rise to
gauge-invariant finite contributions.27–29 This corresponds to
the transport time, given by q2�T2/z multiplication in the
quasiparticle lifetime. As a result, we find the following ex-
pression for the electrical resistivity:

��T� # T4/3, �35�

consistent with the previous results.26 We obtain non-Fermi-
liquid physics in both quantum critical and disordered
phases, where both valence-bond and gauge fluctuations
cause the non-Fermi-liquid transport in the quantum critical

regime while only gauge fluctuations result in that in the
disordered phase.

V. APPLICATION TO ONE DIMENSION

Although our effective-field theory �Eq. �10�� is physi-
cally reasonable, we would like to justify its validity apply-
ing it to one dimension. In one dimension the spin sector is
described by the SO�4� WZW theory, and the charge sector is
represented by QED2 without the chemical-potential term.
Accordingly, the coupling term between valence-bond fluc-
tuations and holons is adjusted. The resulting effective-field
theory in one dimension is obtained to be

S =� d2x� 1

2g
�
k=1

4

��	vk�2

+ i
2�

Area�S3��0

1

dt�abcdva�tvb��vc�xvd� +� d2x��̄�	��	

− ia	
3�3 − iA	�� − m��̄�i�5v4�� +

1

2e2 ��3	��	a�
3�2� , �36�

where �	 and �5 are 2�2 matrices and � is a four compo-
nent Dirac spinor. The SO�4� WZW theory of the spin sector
has been derived in Ref. 12 using the path-integral formula-
tion for non-Abelian chiral anomaly. Here, we investigate the
role of massless Dirac fermions, introduced from Eq. �10�,
by reducing the two-dimensional theory down to one dimen-
sion.

Performing the Abelian bosonization for the fermion sec-
tor, we obtain the following expression:

S =� d2x� 1

2g
�
k=1

4

��	vk�2

+ i
2�

Area�S3��0

1

dt�abcdva�tvb��vc�xvd�
+� d2x�1

2
��	$+�2 +

1

2
��	$−�2 + 	�

�
m�
v4 sin��4�$+�

+ 	�
�

m�
v4 sin��4�$−�

− ia	
3	 1

2�
�	���$+ −

1

2�
�	���$−


− iA		 1

2�
�	���$+ +

1

2�
�	���$−
 +

1

2e2 ��	��	a�
3�2� ,

�37�

where the subscript � in the bosonic field $� represents the
SU�2� doublet of �3 and � is a cutoff associated with band
linearization. Performing integration for U�1� gauge fields,
we find a mass-type term e2

8�2 �$+−$−�2. This allows us to set
$+=$−�$ in the low energy limit. Shifting �4�$ with
−�2 +�4��, we are led to
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S =� d2x� 1

2g
�
k=1

4

��	vk�2

+ i
2�

Area�S3��0

1

dt�abcdva�tvb��vc�xvd� +� d2x���	��2

− 	2�

�
m�
v4 cos��4��� − iA		 1

�
�	����
� . �38�

It is interesting to see that valence-bond excitations lead to
charge-density wave fluctuations, consistent with our expec-
tation.

The valence band and charge-density wave coupling term
can be taken into account in the cumulant expansion, and the
correction part is given by

�S = −
1

2
��Sint

2 � − �Sint�2�

= −
1

2
	2�

�
m�
2� d2x� d2x��v4�x�

��cos��4���x��cos��4���x����v4�x��

+ cos��4���x���v4�x�v4�x���cos��4���x���

� �Sv4
+ �S�, �39�

where Sint=−�d2x� 2�
� m��v4 cos��4��� is the coupling term.

It is not difficult to evaluate the density-density correlation
function since charge fluctuations are described by the non-
interacting Gaussian ensemble if metallic charge dynamics is
assumed. In this case we find

�cos��4���x��cos��4���x����

# cosh�4����x���x����

= cosh�4�C� ln�x − x��� → �x − x��4�C�, �40�

where C� is a positive numerical constant and the last part is
valid at large distances, i.e., �x−x��→�.

Inserting this expression into the spin sector, we obtain an
effective theory for SO�4� spin fluctuations,

Sv4
=� d2x� 1

2g
�
k=1

4

��	vk�2

+ i
2�

Area�S3��0

1

dt�abcdva�tvb��vc�xvd�
−� d2x� d2x�Cv4

	2�

�
m�
2

v4�x��x − x��4�C�v4�x�� ,

�41�

where Cv4
is a positive numerical constant. An important

point is that metallic charge fluctuations give rise to confin-
ing interactions between monopoles, suppressing monopole
fluctuations. This tendency is completely consistent with our
previous two-dimensional analysis, where holon fluctuations
cause dissipative monopole dynamics described by z=3, pro-
hibiting their proliferation. In one dimension charge dynam-

ics suppresses monopole condensation more strongly.
An immediate question is the nature of spin dynamics

described by Eq. �41�. Since monopole excitations will be
suppressed via charge fluctuations, spinon deconfinement is
expected to appear. A relevant point is whether spin fluctua-
tions are critical or not. The SO�4� WZW theory is well
known to exhibit criticality without the fermion-induced
monopole-suppressing term at half filling, where monopole
excitations turn out to be irrelevant due to the presence of the
topological WZW term, which differs completely from the
charge-dynamics monopole-suppressing mechanism. Since
the SO�4� symmetry is broken by the presence of charge
fluctuations shown by the last term of Eq. �41�, we expect
that the WZW term may not be relevant in this case, thus
resulting in spin gap. This seems to be consistent with our
physical intuition that charge fluctuations will cut spin cor-
relations, making their correlation length short. Then, the
resulting state is identified with the Luther-Emery phase,
where spin fluctuations are gapped and charge excitations
exhibit enhanced superconducting correlations.30

On the other hand, if charge fluctuations are gapped, i.e.,
in the Mott insulating phase, their density-density correla-
tions will vanish at large distances as follows,
�cos��4���x��cos��4���x����#e−�x−x��/��, where ��

−1 is asso-
ciated with their excitation gap. Then, spin dynamics will be
described by the pure SO�4� WZW theory in the long-
wavelength limit. As a result, the critical spin liquid Mott
insulator is expected to appear in this case.

VI. SUPERCONDUCTIVITY AND STABILITY OF THE
ANOMALOUS METAL

Until now, we have seen the nature of the anomalous me-
tallic phase. An important problem is how d-wave supercon-
ductivity evolves from the non-Fermi-liquid state. In our ef-
fective theory approach superconductivity can appear only
from pairing of fermionic doped holes. As shown explicitly
in our effective action �Eq. �10��, interactions between doped
holes are mediated by both gauge and valence-bond fluctua-
tions. An important thing is that these interactions compete
with each other.

Since holons carry an isospin quantum number repre-
sented by the �3 matrix, two kinds of fermion pairs can be
considered. When their isospin quantum numbers are differ-
ent from each other, gauge fluctuations cause attractive inter-
actions for the particle-particle channel while valence-bond
fluctuations give rise to repulsive ones. This is nothing but
the pairing possibility between b1 and b2 bosons in the
bosonic description14 of the SU�2� slave-boson theory, dis-
cussed by Lee et al.3 In this respect such pairing possibility
is the unique feature of the SU�2� slave-boson description for
superconductivity.

On the other hand, when their isospin quantum numbers
are the same as each other, gauge fluctuations give rise to
repulsive interactions for the particle-particle channel while
valence-bond fluctuations cause attractive ones between ho-
lons on different sublattices. Do not confuse the present uni-
form �ferromagnetic� gauge fluctuations with staggered �an-
tiferromagnetic� ones. Staggered gauge fluctuations,
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discussed previously in the slave-fermion context, cause at-
tractive interactions between doped holes on different sublat-
tices. Gauge fluctuations appearing in the present theory are
in the uniform channel associated with the third component
of the SU�2� slave-boson theory. The presence of �3 matrix in
the gauge coupling supports this fact. As a result, such ho-
lons have the same gauge charges, repulsing each other.

Based on the above discussion, we conclude that emer-
gence of superconductivity is determined by the relative
strength between the couplings of gauge and valence-bond
fluctuations with doped holes. An interesting observation is
that the presence of repulsive interactions in both cases may
favor d-wave pairing of doped holes.

Now, we derive a full set of Eliashberg equations includ-
ing the pairing channel. In this paper we consider only the
first case, that is, pairing between different isospins. One can
construct the Luttinger-Ward functional in the same way as
the previous case �Eq. �16��,

FLW = FLW
� + FLW

v + FLW
a + Yv + Ya,

FLW
� = − T�

i�
� ddk

�2��d tr�ln�g�
−1�k,i��I + ���i��

− ���i��G��k,i��� ,

FLW
v = T�

i�
� ddq

�2��d� �
m,n=1

5

ln�dv
−1�q,i���mn +�v

mn�q,i��

− �
m,n=1

5

�v
mn�q,i��Dv

mn�q,i��� − mv
2,

FLW
a = T�

i�
� ddq

�2��d �ln�da
−1�q,i�� +�a�q,i��

−�a�q,i��Da�q,i��� ,

Yv = −
m�

2

2
T�

i�
� ddk

�2��dT�
i�
� ddq

�2��d

� �
m,n=4

5

tr�Dv
mn�q,i���mG��k + q,i� + i���nG��k,i��� ,

Ya = −
1

2
T�

i�
� ddk

�2��dT�
i�
� ddq

�2��d tr�Da
	��q,i��

��	�3G��k + q,i� + i�����3G��k,i��� . �42�

Here, G�
−1�k , i��=g−1�k , i��+��k , i�� is matrix Green’s

function with an anomalous propagator, where g�k , i��
=g�k , i��I with g−1�k , i��= �i�	k	+	h�0�−1 is bare Green’s

function and ��k , i��= � ��k,i�� ��k,i��
���k,i�� ��k,i�� � is the self-energy ma-

trix with its anomalous part.
The above Luttinger-Ward functional results in the fol-

lowing Eliashberg equations:

���i�� = m�
2T�

i�
� ddq

�2��d �
m,n=4

5

Dv
mn�q,i���mG��kF + q,i�

+ i���n + T�
i�
� ddq

�2��dDa
	��q,i��

��	�3G��kF + q,i� + i�����3,

�v
mn�q,i�� = T�

i�
� ddk

�2��d �
m,n=4

5 	−
m�

2

2
tr��mG��k + q,i�

+ i���nG��k,i���
 ,

�a
	��q,i�� = T�

i�
� ddk

�2��d	−
1

2
tr��	�3G��k + q,i� + i��

����3G��k,i���
 , �43�

where this is basically the same as the previous one �Eq.
�17��, but the holon propagator is replaced with a matrix
including its superconducting part. If we rewrite the above
equations with each component of the holon propagator, we
obtain

��k,i�� = m�
2T�

i�,q
�
n=3

4

�nG�k + q,i� + i��Dnn
v �q,i���n

+ T�
i�,q

�
i,j=x,y

�iG�k + q,i� + i��Dij
a �q,i��� j

�44�

and

��k,i�� = m�
2T�

i�,q
�
n=3

4

�nF�k + q,i� + i��Dnn
v �q,i���n

− T�
i�,q

�
i,j=x,y

�iF�k + q,i� + i��Dij
a �q,i��� j ,

�45�

where the normal and abnormal holon propagators are given
by

G�k,i�� =
g−1�k,i�� + ��k,i��

�g−1�k,i�� + ��k,i���2 − ���k,i���2
,

F�k,i�� = −
��k,i��

�g−1�k,i�� + ��k,i���2 − ���k,i���2
. �46�

As shown in Eqs. �45� and �46�, gauge fluctuations cause
attractive interactions between holons with different isospins,
guaranteed by the presence of the �3 matrix, while valence-
bond fluctuations result in repulsive ones. The presence of
repulsive interactions opens the possibility of d-wave pairing
of doped holes.

As discussed above, there is another pairing channel be-
tween holons with the same isospins but on different sublat-
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tices, induced by valence-bond fluctuations. Comparison of
these two superconducting phases by solving each Eliash-
berg equations remains as an important future work. What
we would like to mention is that because both gauge and
valence-bond fluctuations give rise to competing interac-
tions, the present anomalous metallic phase is expected to be
stable against superconductivity in some parameter regions
of the effective theory �Eq. �10��. Even if such a metallic
phase becomes unstable against superconductivity at zero
temperature, at finite temperatures the present non-Fermi-
liquid physics would survive.

There is another instability channel associated with
particle-hole pairing. Different from the particle-particle
channel, gauge fluctuations cause attractive interactions for
the particle-hole channel when holons have the same isospin.
As pointed out by Altshuler et al.,31 the 2kF vertex with the
Fermi momentum kF is power-law diverging with its expo-
nent 1 /N approximately, where N is the flavor number of
fermions. They showed that divergence of particle-hole sus-
ceptibility depends on the exponent of the diverging vertex.
In other words, the particle-hole pairing instability arises
when the divergence of the 2kF interaction vertex is suffi-
ciently strong. In this respect the present effective theory
with the large N approximation is expected to be free from
such particle-hole instabilities. Remember that the large N
approximation is consistent with the self-consistent Eliash-
berg framework. Interestingly, valence-bond fluctuations are
against such particle-hole pairings as they compete with
gauge fluctuations for superconductivity. More quantitative
analysis for the particle-hole channel is required when the
flavor number of fermions is not large. However, this is be-
yond the scope of the present paper since it is not clear
whether even the Eliashberg approximation is stable or not in
this case.

In the recent publication32 the presence of an interesting
inhomogeneous superconducting state was demonstrated in
the two-leg ladder system based on the renormalized mean-
field theory, where a heavy numerical analysis was per-
formed for solving self-consistent mean-field equations of
order parameters in real space. From the present approach it
is difficult to see the emergence of such complicated inho-
mogeneous order-parameter patterns because our effective-
field theory is based on the uniform phase of order param-
eters.

Applying the present theoretical framework to the two-leg
ladder system, one would see that gauge fluctuations enhance
the 2kF particle-hole vertex to cause power-law divergence,
but the particle-hole susceptibility does not diverge at least in
the large N approximation, as discussed above. However,
charge and spin-density waves can certainly occur when the
fermion flavor number is small. In this respect, when the
coupling strength between doped holes and valence-bond
fluctuations is large but the fermion flavor number is not
large, an inhomogeneous superconducting phase is expected
to appear. Unfortunately, fully self-consistent analysis in-
cluding both particle-particle and particle-hole instabilities is
clearly beyond the scope of the present paper.

VII. SUMMARY

Fermionizing the charge sector and bosonizing the spin
part in the SU�2� slave-boson theory, we have derived an

effective-field theory for dynamics of doped holes in the an-
tiferromagnetically correlated spin background, where spin
fluctuations are described by the SO�5� WZW theory while
charge dynamics is expressed by nonrelativistic QED3
around four Dirac nodes. In particular, hole dynamics affects
deconfinement of bosonic spinons in the SO�5� WZW theory
through the coupling term between valence-bond �monopole�
fluctuations and fermionic holons. Such interactions give rise
to z=3 criticality for monopole dynamics, prohibiting their
proliferation in the presence of the WZW term. As a result,
holon fluctuations turn out to help spin fractionalization near
the quantum critical point.

We have investigated thermodynamics and transport in
the Eliashberg framework for our effective-field theory. We
pointed out that the Eliashberg framework is the lowest-order
self-consistent approximation well controlled in our
effective-field theory, where Migdal theorem works well ow-
ing to z=3 criticality, and the large N� limit with the number
of Dirac nodes N� is naturally allowed. We find that spin
fluctuations are described by z=1 for antiferromagnetic fluc-
tuations and z=3 for valence-bond excitations, giving rise to
three regimes, where superspin fluctuations are gapped at
low temperatures, only valence-bond excitations are critical
at intermediate temperatures and superspin fluctuations are
critical at high temperatures. Both valence-bond and gauge
fluctuations are described by z=3 critical theory, and we find
non-Fermi-liquid physics for thermodynamics and electrical
transport near the quantum critical point, consistent with z
=3 scaling. In addition, even in the quantum disordered
phase such non-Fermi-liquid physics is preserved owing to
critical gauge fluctuations.

To further justify our effective-field theory, we have ap-
plied it to one dimension, physically well known. In one
dimension spin fluctuations are described by the SO�4�
WZW theory while charge excitations are represented by
QED2. We have taken the monopole-holon coupling term
into account in the Abelian bosonization framework. We
demonstrated that holon dynamics results in confining inter-
actions between monopole excitations. Thus, we conclude
that charge fluctuations help spinon deconfinement in both
one- and two-dimensional cases while charge dynamics sup-
presses monopole fluctuations more strongly in one dimen-
sion.

We have discussed stability of the non-Fermi-liquid me-
tallic phase against superconductivity and density waves. An
interesting observation is that two kinds of holon pairing
channels exist due to the presence of the isospin quantum
number in the SU�2� slave-boson description. In the different
isospin channel attractive pairing interactions are caused by
gauge fluctuations while in the same isospin channel such
interactions arise from valence-bond fluctuations. An impor-
tant thing is that such gauge and valence-bond interactions
compete with each other. As a result, superconductivity is
expected to appear in a limited parameter range. The pres-
ence of repulsive interactions allows the possibility of
d-wave pairing of doped holes. For the particle-hole channel,
we argued that as far as the fermion flavor number is suffi-
ciently large, consistent with the Eliashberg approximation,
the homogeneous metallic phase can be stable against charge
and spin-density waves.
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We would like to emphasize that the SU�2� structure is
important for our treatment. If we start from the U�1� slave-
boson representation, the fermionization procedure is not
performed naturally since we have nonzero net flux owing to
the presence of finite density of holons. Furthermore, the
SO�5� WZW theory for the spin sector does not appear ow-
ing to the contribution from a chemical-potential term in the
U�1� slave-boson framework.

Our effective-field theory exhibits direct interactions be-
tween monopoles and holes, associated with deconfinement
of bosonic spinons away from half filling. The important

issue on how doped holes affect spinon deconfinement de-
serves to be studied more carefully.
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